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Abstract This paper presents an application of the dual reciprocity boundary element method
(DRBEM) to transient advection-diffusion problems. Radial basis functions and augmented thin
plate splines (TPS) have been used as coordinate functions in DRBEM approximation in addition
to the ones previously used in the literature. Linear multistep methods have been used for time
integration of differential algebraic boundary element system. Numerical results are presented for
the standard test problem of advection-diffusion of a sharp front. Use of TPS yields the most
accurate results. Further, considerable damping is seen in the results with one step backward
difference method, whereas higher order methods produce perceptible numerical dispersion for
advection-dominated problems.

1. Introduction
The phenomenon of advection-diffusion is observed in many physical
situations involving transport of energy and chemical species. Some of the
examples are the transport of pollutants – thermal, chemical or radioactive –
in the environment, flow in porous media, impurity redistribution in
semiconductors, travelling magnetic field etc. The governing equation for
advection-diffusion is usually characterized by a dimensionless parameter,
called Peclét number, Pe, which is defined as

Pe ¼ jvj
L

D
; ð1Þ

where v is the advective velocity, L is the characteristic length and D is the
diffusivity associated with the transport process. When Pe is small, diffusion
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dominates and the advection-diffusion equation is nearly parabolic. On the
other hand, if Pe is large, then advection dominates and the governing equation
becomes hyperbolic. Accurate numerical solution of the advection-diffusion
equation becomes increasingly difficult as the Pe increases due to the onset of
spurious oscillations or excessive numerical damping, if standard finite
difference or finite element formulations are used. To deal with such advection
dominated problems, numerous innovative algorithms have been suggested
based on the local analytical solution of the advection-diffusion equation in the
finite difference and finite element literature (Carey and Jiang, 1988; Celia et al.,
1989; Chen and Chen, 1984; Demkowicz and Oden, 1986; Ding and Liu, 1989;
Donea et al., 1984; Hughes and Brooks, 1982; Li et al., 1992; Park and Ligget,
1990; Raithby and Torrance, 1974; Spalding, 1972; Westerink and Shea, 1989;
Yu and Heinrich, 1986).

The reduction in the effective dimensionality of a problem offered by the
boundary element method has attracted its application to the
advection-diffusion problem as well, and it has been observed that the BEM
solutions seem to be relatively free from spurious oscillations or excessive
numerical damping (vis-à-vis finite element or finite difference solutions). The
basic reason being the correct amount of upwinding provided by the
fundamental solution in the BEM. Various formulations have been proposed
for the transient advection-diffusion problems. Boundary element formulations
based on time-dependent fundamental solutions have been suggested by
Brebbia and Skerget (1984) and Ikeuchi and Onishi (1983). Ikeuchi and Onishi
(1983) derived time-dependent fundamental solution to the advection-diffusion
equation in Rn, and proved that the boundary element solution is stable for
large diffusion number and Courant number. This formulation is used by
Ikeuchi and Tanaka (1985) for the solution of magnetic field problems. Tanaka
et al. (1987) used the same formulation with mixed boundary elements and
studied the dependence of the relative error on space and time discretization.
On the other hand, Brebbia and Skerget (1984) used the fundamental solution of
diffusion equation and treated the convective terms as a pseudo source term.
Okamoto (1989, 1991) used Laplace transforms in conjunction with combined
boundary and finite element methods for the solution of transient
advection-diffusion problem on an unbounded domain.

Another class of boundary element formulations use the fundamental
solution of a related steady-state operator and treat the time derivative and any
other remaining terms as a pseudo source term. These formulations result in a
system of differential-algebraic equations in time which can be solved using a
suitable time integration algorithm. Taigbenu and Liggett (1986) proposed one
such formulation. They use the fundamental solution of Laplace equation and
treat the time derivative and convective terms as source terms which are
incorporated in the boundary element formulation by domain discretization.
Single step time-differencing scheme is used for time marching and solutions
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are presented for a wide range of Pe – from very low (diffusion-dominated
problems) to infinite (pure advection problems). Aral and Tang (1989) also used
the fundamental solution of the Laplace equation, but made use of a secondary
reduction process, called SR-BEM (Aral and Tang, 1988), to arrive at a
boundary-only formulation. They present the results of the advection-diffusion
problems with or without first order chemical reaction for low to moderate Pe.
Two other formulations in this category are based on the dual reciprocity
boundary element method (DRBEM) (Partridge et al., 1991). The first one
employs the fundamental solution to Laplace equation and applies the dual
reciprocity treatment to time derivative and convective terms. The second one
uses the fundamental solution to the steady-state advection-diffusion equation
and transforms the domain integral arising from the time derivative term using
a set of coordinate functions and particular solutions which satisfy the
associated nonhomogeneous steady-state advection-diffusion equation
(DeFigueiredo and Wrobel, 1990). In both these formulations, the resulting
differential-algebraic equation is solved using one step u-method. Partridge
et al. (1991) used u ¼ 0:5 in computations with first formulation and u ¼ 1:0;
with the second one, and observed that the accuracy of both the dual
reciprocity formulations is very good for all problems considered, with no
oscillations and only a minor damping of the wave front. They further indicate
that the second formulation is more accurate than the first one. However, all the
DRBEM applications have considered only the problems involving low values
of Pe.

In this work, we concentrate on the application of the DRBEM based on the
fundamental solution to the steady-state advection-diffusion equation to obtain
a clear picture of its performance for advection-diffusion problems involving
moderate to high Pe, since advection-dominated problems have received little
attention in DRBEM literature. Further, only a simple set of radial basis
functions has been previously used in this formulation. We consider two other
sets of coordinate functions – complete radial basis functions and augmented
thin plate splines (TPS), and analyse their performance in conjunction with
higher order time integration algorithms for advection-dominated problems.
We start with a brief review of the governing equations and the boundary
element formulation, give the description of the coordinate functions and time
integration schemes and present numerical results for a standard test problem
of advection-diffusion of a sharp front.

2. Advection-diffusion equation
Let us consider a homogeneous isotropic region V , R2 bounded by a
piece-wise smooth boundary G. Let f be the transported quantity, and ð0;T� ,
R be the time interval of interest. Let x represent the spatial coordinate, and t
the time. The transport of f in the presence of a first order reaction is governed
by the equation
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›

›t
þ v ·7þ k 2 D72

� �
fðx; tÞ ¼ 0 in V £ ð0;T�; ð2Þ

with the initial condition

fðx; 0Þ ¼ f0ðxÞ on �V; ð3Þ

and the boundary conditions

fðx; tÞ ¼ �fðx; tÞ on Gf £ ð0;T�; ð4Þ

qðx; tÞ ¼ �qðx; tÞ on Gq £ ð0;T�; ð5Þ

qðx; tÞ ¼ hðx; tÞ{frðx; tÞ2 fðx; tÞ} on Gr £ ð0;T�; ð6Þ

where v denotes the velocity field, D is the diffusivity and k is the reaction rate.
f0; �f; �q;fr and h are known functions and q ¼ ›f=›n; n being the unit
outward normal. Further, Gf, Gq and Gr denote the disjoint segments (some of
which may be empty) of the boundary such that Gu < Gq < Gr ¼ G: In this
work, we assume that the advective velocity v and diffusivity D remain
constant.

3. Boundary element formulation
This section presents a brief review of the dual reciprocity boundary element
formulation for transient advection-diffusion based on the fundamental
solution of the steady-state advection-diffusion equation. Further details are
given in DeFigueiredo and Wrobel (1990) and Partridge et al. (1991).

To transform the advection-diffusion equation (2) into an equivalent
boundary integral equation, we start with the weighted residual statementZ

V

›f

›t
þ v ·7fþ kf2 D72f

� �
f* dV ¼ 0; ð7Þ

where f* is the fundamental solution of the steady-state advection-diffusion
equation, i.e. the solution of

D72f* þ v ·7f* 2 kf* þ dðj; xÞ ¼ 0: ð8Þ

In the preceding equation, d is the Dirac delta function, and j and x denote the
source and field points, respectively. For two-dimensional problems, f* is
given by (Partridge et al., 1991)

f* ¼
1

2pD
exp 2

v · r

2D

� �
K0ðmrÞ; ð9Þ

where
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m ¼
jvj

2D

� �2

þ
k

D

" #1=2

; ð10Þ

and K0 is the Bessel function of the second kind of order zero. Application of
Green’s second identity and relation (8) to the statement (7) yields

cifi þ D

Z
G

q* þ
vn

D
f*

� �
f2 f*q

h i
dG ¼ 2

Z
V

›f

›t
f* dV; ð11Þ

where the index i stands for the source point j, q* ¼ ›f*=›n; vn ¼ v · n and

ci ¼

Z
V

dðj; xÞ dV:

To transform the domain integral in equation (11), the time derivative is
approximated by

_f ¼
XNP

j¼1

f jðxÞa jðtÞ; ð12Þ

where the dot f on denotes the temporal derivative, a j are unknown functions
of time and f j are known coordinate functions. Further, it is assumed that for
each function f j, there exists a function c j which is a particular integral of the
equation

D72c2 v ·7c2 kc ¼ f : ð13Þ

Introducing approximation (12) into equation (11) and applying integration by
parts, we obtain the following boundary integral equation:

cifi þ D

Z
G

q* þ
vn

D
f*

� �
f2 f*q

h i
dG

¼
XNP

j¼1

a j cic
j

i þ D

Z
G

q* þ
vn

D
f*

� �
c j 2 f*h j

h i
dG

� �
; ð14Þ

where h j ¼ ›c j=›n:
Application of the standard boundary element discretization procedure and

approximation of f, q, c, and h by the same set of interpolation functions
within each boundary element followed by the collocation of the discretized
boundary integral equation at all the freedom nodes (boundary plus internal)
results in the system of equations

Hf2 Gq ¼ ðHC2 GEÞa; ð15Þ
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where H and G are the global matrices of the boundary integrals with kernels
ðq* þ vnf*=DÞ and f*, respectively; C and E are the coordinate function
matrices of functions c and h, respectively; and a, f and q denote global nodal
vectors of respective functions. Equation (12) can be used to eliminate a from
the preceding equation and thus, obtain the differential algebraic system

C _fþ Hf2 Gq ¼ 0; ð16Þ

where C ¼ ðGE 2 HCÞF21; F being the coordinate function matrix of the
functions f j.

4. Coordinate functions
Various sets of coordinate functions have been used in the dual reciprocity
method for different class of problems. These include radial basis functions,
TPS, multiquadrics etc. (Goldberg et al., 1996, 1998). However, in the case of
the dual reciprocity formulation for the advection-diffusion problems based on
the fundamental solution of the steady-state advection-diffusion equation, the
situation is quite different, probably due to the difficulty in obtaining closed
form particular solutions to equation (13) for a given choice of f j. Only the
following set of coordinate functions has been used so far (DeFigueiredo and
Wrobel, 1990):

c ¼ r 3; h ¼ 3 r r · n; f ¼ 9D r 2 3 r r · v 2 kr 3: ð17Þ

To obtain the preceding set, DeFigueiredo and Wrobel (1990) choose function c
and obtained h and f by substituting directly into equation (13). This set would
be referred to as RBF1 hereafter. This choice of the particular solution c
essentially corresponds to the choice of f ¼ 9r for the Poisson’s equation. We
can follow the same approach to obtain the other sets of coordinate functions.
We consider two more alternative sets corresponding to f ¼ 1 þ r and
augmented TPS for the Poisson’s equation, both of which are known to possess
better interpolation properties (Goldberg et al., 1998), and thus are likely to
yield more accurate results in the present context as well. If we choose c ¼
r 2=4 þ r 3=9; corresponding to the choice of f ¼ 1 þ r for Poisson’s equation,
we can obtain the following set (which would be referred to as RBF2):

c ¼ r 2=4 þ r 3=9;

h ¼ ð1=2 þ r=3Þr · n;

f ¼ Dð1 þ rÞ2 ð1=2 þ r=3Þr · v 2 kð9r 2 þ 4r 3Þ=36:

ð18Þ

Further, if we choose c corresponding to augmented TPS for the Poisson’s
equation, we obtain the following set:
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c ¼ r 4ð2 log r 2 1Þ=32 þ r 2=4 þ r 3=9;

h ¼ ð12r 2 log r 2 3r 2 þ 16r þ 24Þ r · n=48;

f ¼ Dð1 þ r þ r 2 log rÞ2 ð12r 2 log r 2 3r 2 þ 16r þ 24Þ r · v=48 2 kc:

ð19Þ

5. Temporal discretization
The differential algebraic system (16) has a form similar to the one obtained
using the finite element method and hence, can be solved by any standard
time integration scheme by incorporating suitable modifications to account
for its mixed-nature. Based on our previous experience (Singh and Kalra, 1996;
Singh and Tanaka, 1998), we opt for one and multistep u-methods of
SSp1 family (Wood, 1990) in this work. Further details on the temporal
discretization aspects are available in Singh and Kalra (1996) and Singh and
Tanaka (1998).

The general form of a p-step algorithm of SSp1 family (Zienkiewicz et al.,
1984) for the differential-algebraic boundary element system (16) can be
expressed as

Xp

j¼0

{ðgjC þ bjDtHÞfaj
2 bjDtGqaj

} ¼ 0; ð20Þ

where aj ¼ n þ j þ 1 2 p; and gj, bj are scalar coefficients which can be
expressed as functions of p u-parameters (Wood, 1990). Table I lists some
schemes of this family and related parameters. The choice of the schemes has
been made keeping in view the stringent stability requirements of a differential
algebraic system. Of these algorithms, one step backward difference scheme is
the most stable, but the least accurate. The Crank-Nicolson scheme is supposed
to be the most accurate amongst the linear multistep methods, but is only
marginally stable and prone to oscillations. Two and three step backward
difference methods are likely to provide a compromise on accuracy and
algorithmic damping.

Algorithm Abbreviations Parameters

Crank-Nicolson method SS1C u ¼ 1/2
One step backward difference SS1B u ¼ 1
Two step backward difference SS2B u1¼1.5, u2¼ 2
Three step backward difference SS3B u1¼2, u2 ¼ 11=3; u3¼ 6

Table I.
Time integration
algorithms from
SSp1 family for

advection-diffusion
problem
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Let us note that the multistep methods require additional starting values. Use
of a higher order single step scheme such as the Runge-Kutta method is
generally recommended in the literature for the generation of these additional
initial conditions. However, numerical experiments by Singh and Kalra (1996)
show that the higher order one step schemes are prone to numerical oscillations
for differential-algebraic systems. Hence, we opt for the one step backward
difference method with a reduced time step to generate additional starting
values.

6. Error indicators
To measure the quality of the approximate solution, we need to utilize some
appropriate norms. In the context of the boundary element analysis, the
boundary L2 norm is usually preferred, as it can be easily evaluated from the
boundary solution alone in contrast to the energy norm which requires
solutions to be known at internal points as well (Rencis and Jong, 1989).

The absolute error in the approximate solution of function v is defined as

evðx; tÞ ¼ vðx; tÞ2 vaðx; tÞ; ð21Þ

where v(x, t) denotes the exact value and va(x, t) is the approximate value
obtained from the boundary element analysis. The L2 global error norm is
defined by

kevk
2
2 ¼

Z
G

e2
v dG ¼

XNe

i¼1

Z
Gi

e2
v dG; ð22Þ

where Ne is the total number of boundary elements. To obtain a more
transparent measure of solution error, exact relative L2 error (in per cent) can be
defined as (Rencis and Jong, 1989)

hv ¼
kevk2

kvk2
£ 100; ð23Þ

in which

kvk
2
2 ¼

Z
G

v2 dG:

For the computation of L2-norms, we have used Gaussian quadrature with
24 integration points.

7. Numerical results
Let us consider the standard test problem of advection-diffusion of a sharp
front along a line in uniform flow with the initial condition
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fðx1; 0Þ ¼ 0 x1 [ ½0;1Þ; ð24Þ

and the boundary conditions

fð0; tÞ ¼ 1; fð1; tÞ ¼ 0: ð25Þ

With uniform advective velocity u, and absence of external or internal sources
and reaction term, the exact solution of this problem is given by

fðx1; tÞ ¼
1

2
erfcðz1Þ þ exp

ux1

D

� �
· erfcðz2Þ

h i
; ð26Þ

where z1 ¼ ðx1 2 utÞ=
ffiffiffiffiffiffiffiffi
4Dt

p
and z2 ¼ ðx1 þ utÞ=

ffiffiffiffiffiffiffiffi
4Dt

p
: This problem is

modelled as a two-dimensional problem over the rectangular domain V
defined as

V ¼ {ðx1; x2Þ : x1 [ ð0; 1Þ; x2 [ ð0; 0:1Þ}; ð27Þ

with the zero initial condition. Boundary conditions are: fðx; tÞ ¼ 1 on
the boundary x1 ¼ 0; qðx; tÞ ¼ 0 along upper ðx2 ¼ 0:1Þ and lower boundary
ðx2 ¼ 0Þ; and fðx; tÞ ¼ 0 on the boundary x1 ¼ 1: The last boundary condition
represents an approximation of the boundary condition fð1; tÞ ¼ 0:

Equal linear elements ðDG ¼ 0:05Þ have been used for the discretisation of
the boundary G, with partially discontinuous elements at the corners. We take
u ¼ 1:0; and thus with the unit value of the characteristic length L, Pe ¼ 1=D:
We present results with two values of D which correspond to Pe ¼ 500; and
1,000, respectively. These two cases represent moderate to heavily
advection-dominated transport process.

We summarize the errors in the numerical solutions for both the cases for
different sets of the coordinate functions in Table II. It can be observed that for
both the problems, the higher order multistep methods produce very accurate
results, and the three step backward difference scheme is the most accurate.
Further, choice of augmented TPS as coordinate functions yields the most
accurate results, whereas the previously used choice, RBF1, is the least
accurate.

Figures 1 and 2 present the profile of the sharp front at t ¼ 0:5 with SS1B
and SS3B, respectively. For both the cases, considerable damping of the front is
observed with the one step backward difference method, whereas perceptible

Relative L2 error (per cent) with Dt¼0.005
Pe ¼ 500 Pe ¼ 1,000

Scheme RBF1 RBF2 TPS RBF1 RBF2 TPS

SS1B 6.11 6.07 5.96 8.15 8.06 7.72
SS1C 4.29 4.07 3.81 6.08 5.75 5.18
SS2B 3.88 3.68 3.41 5.81 5.50 4.97
SS3B 3.60 3.41 3.18 5.50 5.18 4.67

Table II.
Errors in the

boundary element
solution of sharp
front problem for

Pe ¼ 500 and 1,000
(t ¼ 0.5)
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Figure 1.
Profile of the sharp front
at t ¼ 0.5 with SS1B and
different coordinate
functions. (a) Pe ¼ 500
and (b) Pe ¼ 1,000
(Dt ¼ 0.005)
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Figure 2.
Profile of the sharp front
at t ¼ 0.5 with SS3B and

different coordinate
functions (Dt ¼ 0.005)
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numerical dispersion is present in the solution with SS3B (results with other
two higher order schemes are very similar).

8. Concluding remarks
We have presented an application DRBEM to the transient advection-diffusion
problems. In addition to the previously used set of coordinate functions of
radial basis type, two more sets of coordinate functions – the radial basis and
TPS type – have been evaluated. Of these, the use of the augmented TPS yields
the most accurate results. Linear multistep methods have been used for time
integration of the differential algebraic boundary element system. Of these, one
step backward difference method produces considerable damping of the wave
front. The higher order schemes yield good overall accuracy, although some
numerical dispersion is present in the solution for the advection-dominated
problems.
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